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The development of non-uniform sampling (NUS) strategies permits to obtain high-dimensional spectra
with increased resolution in significantly reduced experimental time. We extended a previously proposed
signal separation algorithm (SSA) to process sparse four-dimensional NMR data. It is employed for two
experiments carried out for a partially unstructured 114-residue construct of chicken Engrailed 2 protein,
namely 4D HCCH-TOCSY and 4D C, N-edited NOESY. The SSA allowed us to obtain high-quality spectra
using only as little as 0.16% of the available samples, with low sampling artefacts approaching the ther-
mal noise level in most spectral regions. It is demonstrated that NUS 4D HCCH-TOCSY is dominated by
sampling noise and requires efficient artefact suppression. On the other hand, 4D C, N-edited NOESY is
a particularly attractive experiment for NUS, as the absence of diagonal peaks renders the problem of
artefacts less critical. We also present a transverse-relaxation optimized sequence for HMQC that is espe-
cially designed for longer evolution periods in the indirectly detected proton dimension in high-dimen-
sional pulse sequences. In conjunction with novel sampling strategies and efficient processing methods,
this improvement enabled us to obtain unique structural information about aliphatic-amide contacts.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, high-dimensional NMR experiments have
gained increased importance in research on structure and dynamics
of complex biomolecules. Despite continuing hardware improve-
ments, the capabilities of multidimensional NMR seem limited by
the inherently slow indirect sampling of chemical shifts [1–3].
The sampling theorem imposes restrictions on the maximum evo-
lution times in indirectly detected dimensions

tmax ¼ NDt; ð1Þ

where N is number of data points, Dt = (sw)�1, and sw stands for
spectral width. In three- and higher-dimensional spectroscopy of
biomolecules, this limitation frequently forces the signals to be
truncated, thus preventing one from fully utilizing the advantages
of relaxation optimization as in TROSY [4]. The conventional way
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of collecting multidimensional NMR data is widely regarded as inef-
ficient and a variety of alternatives have been proposed [2,5–10].

Random sampling of evolution time space has been widely rec-
ognized to be one of the most advantageous approaches [11–13].
Several strategies have been proposed to process such data:
maximum entropy [14], multidimensional decomposition [13],
non-uniform Fourier Transformation (nuFT) [15], FFT-CLEAN [16],
signal separation algorithm (SSA) [17], forward maximum entropy
[18], compressed-sensing [19] and Spectroscopy by Integration of
Frequency and Time domain information (SIFT) [20]. These meth-
ods differ in their level of generality, the assumptions that must
be fulfilled, computational complexity, as well as the kind of out-
put. There is still lack of agreement on the best method (if it exists)
and the way the results can be compared. Recent reviews provide
guidelines on experimental cases where certain methods are most
successful, where the capabilities of modern multidimensional
NMR can be extended [2,21].

The origin of NUS artefacts in nuFT spectra is the implicit
assumption that the intensity of signal at the points that were
not measured is zero. The result of such a partial Fourier sum is
therefore no longer a Fourier transform of a signal, or – equiva-
lently – is a FT of zero augmented data. Thus, the commonly used
term ‘non-uniform Fourier Transformation’ does not appropriately
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Fig. 1. Flowchart illustrating the principle of peak fitting in the frequency domain using a model for the time domain signal. Given a peak localized in the nuFT spectrum (b),
the relative amplitudes of the frequency components in the model FID (c) are varied in order to obtain an identical line shape in the simulated nuFT spectrum (e). Finally, a
sparse model signal (d) is subtracted from the experimental data (a) yielding a residual FID (f) and a residual spectrum (g). In this simulation the signal represents a doublet
with J = 15 Hz and R�2 ¼ 25 s�1. Gaussian noise with r = 0.02 (relative to the signal amplitude in the time domain) was added; 100 points were randomly chosen from a 400-
point grid, created for sw = 4 kHz and tmax = 100 ms.

Fig. 2. Spectral reconstruction from data generated by the signal separation algorithm (SSA) (see text for details).
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reflect the underlying mathematical operation. Nevertheless, we
continue to use it across this paper as it is generally accepted in
the literature [22].

The aim of this work was to adapt SSA for processing of sparsely
sampled four-dimensional spectra. This method can be regarded as
a hybrid approach that combines the concepts of CLEAN [23] and
manual artefact removal [12]. The goal of SSA is reconstruction
of a signal at the points omitted in the sampling schedule, and,
as a result, reduction of intensity of NUS artefacts. The successful
application of SSA to 3D 15N- and 13C-edited NOESY was demon-
strated previously for a ubiquitin sample [17].

Side chain resonance assignment represents one of the most
laborious tasks during structure determination of proteins. Conven-
tional approaches based on 3D spectra such as H(CCO)NH-TOCSY,
(H)C(CO)NH-TOCSY and (H)CCH-TOCSY are also error-prone due
to severe spectral overlap of side-chain proton and carbon
resonances.

Recently, a couple of higher-dimensional experiments were
proposed that provide less ambiguous information for assignment.
All of them employ sparse sampling and different processing meth-
ods: maximum entropy [24], FFT-CLEAN [16], automated projec-
tion spectroscopy (APSY) [25] and nuFT [15]. Further advantages
of 4D HCC(CO)NH [24] and 5D HCCCONH [15,25], which offer even
better resolution, lie in reduced spectral crowding. However, these
experiments are quite insensitive due to the large number of
coherence transfer steps. Additionally, nuFT is the only processing
method available at present for randomly sampled 5D spectra, and
the sensitivity of the experiments is further diminished by the
presence of sampling artefacts. The alternative 4D HCCH-TOCSY
[16] experiment features higher sensitivity and more redundant
information; unfortunately the analysis of such spectra still poses
difficulties owing to frequent overlap of resonances. Nevertheless,
for residues with long side chains (e.g., Ile, Val, Leu, Lys, Arg) 4D
HCCH-TOCSY might be the preferred choice. 4D HCCH-TOCSY is
basically less sensitive than its 3D counterparts, H(C)CH- and
(H)CCH-TOCSY, however, as argued by Mobli and co-workers
[24], 4D experiments provide proton and carbon chemical shifts
at once, thus compensating for reduced sensitivity.

In this communication, we report the application of SSA to
crowded 4D HCCH-TOCSY and C, N-edited NOESY spectra. Both
experiments can provide or complement side-chain assignments.
The experiments were carried out for a 13.4 kDa fragment of
Engrailed 2 homeoprotein, that contains a globular homeodomain
and 54-residue intrinsically disordered N-terminal extension that
is functionally important. The preparation of the sample and reso-
nance assignments have been recently reported [26].



Fig. 3. Comparison of the standard (a) and optimized (b) HMQC blocks. (c) Pulse sequence for 4D C, N-edited HMQC-NOESY-HSQC including optimized HMQC. Solid and open
bars represent ‘hard’ 90� and 180� pulses, respectively. All pulses are applied along the x-axis of the rotating frame unless indicated otherwise. Selective sinc-shaped 180�
pulses, with cB1 adjusted to obtain inversion of C’ spin with no effect at Ca, are represented by gray bell-shaped pulses. Adiabatic hyperbolic secant inversion pulse of
200 ppm bandwidth and duration of 1 ms is indicated with a star. Open bell-shaped pulse represents water flip-back sinc pulse with duration of 1.2 ms. Quadrature detection
in t1, t2 and t3 is accomplished by altering u1, u2 and u4, respectively, according to the States-TPPI procedure. Axial peaks in the indirect frequency dimensions are shifted to
the edges of spectrum by increasing u1, u2 and u3 and the receiver phase by 180� for even-numbered points in t1, t2 and t3. The phase cycle is: u1 = �x; u2 = �x, x; u3 = 2(x),
2(�x); u4 = �x, urec = x, �x, �x, x. The delays are D = 3.57 ms, d = 5.38 ms, e = 0.35 ms, f = 2.15 ms, and smix = 160 ms. For the semi-constant time evolution in t1 the delays sa,
sb and sc are t1/2, t1(1 � 2D/t1,max)/2 and D(1 � t1/t1,max), respectively. Gradients are applied as follows: G1 (0.5 ms, 18.5 G/cm), G2 (0.5 ms, 15.5 G/cm), G3 (0.5 ms, 20.3 G/cm),
G4 (2 ms, 31.9 G/cm), G5 = G6 (0.5 ms, 3.7 G/cm), G7 = G8 (0.5 ms, 5.5 G/cm), G9 (0.2 ms, ±32.3 G/cm). The proton carrier is shifted from 3.17 to 4.77 ppm at the beginning of the
mixing period. The carbon carrier is centered at 37.4 ppm, and shifted to 117.4 ppm after the gradient G3 as denoted by arrows.
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As noted previously [27,28] intrinsically disordered proteins,
which have been extensively studied in recent years [29], repre-
sent a very good example of applications of sparse sampling for
at least two reasons: (i) poor chemical shift dispersion leading to
heavy resonance overlap, and (ii) favourable relaxation properties
that allow one to use high-dimensional sequences.

2. Methods

2.1. Processing of 4D spectra using SSA

The signal separation algorithm was recently described in detail
for three-dimensional spectra [17]; here only a brief summary of the
processing scheme is given. The algorithm comprises three stages:

(1) Peak detection.
(2) Simulation of FID signals that correspond to the peaks found
in step 1.

(3) Subtraction of simulated FID signals from the experimental
ones.

These steps are repeated until no further intense peaks are
detectable; typically, up to ten iterations are performed. Similar
algorithms that gradually build a model of systematic portion of
data (i.e. different from noise) are known as maximum likelihood
(ML) method [30] and CLEAN [23]. As for SSA, both ML and CLEAN
use a threshold-based criterion for peak detection. The most appar-
ent distinction between SSA and model fitting based on ML princi-
ple is that the latter aims at extrapolation of uniformly sampled
data to greater evolution times. In contrast, SSA and CLEAN achieve
resolution enhancement by effective interpolation of non-uni-
formly sampled signal.



Fig. 4. A comparison of the sensitivity of the standard (a) and optimized (b) HMQC sequences, shown for 2D H(CN)H-HMQC-NOESY-HSQC spectra for a 0.5 mM sample of
maltose binding protein (42.5 kDa) at 298 K. The pulse sequence for this experiment is shown in Fig. 3. The spectral width for Haliph was 6 kHz in F1, and 128 increments were
collected using semi constant-time evolution. In effect, a maximum evolution time of 21.2 ms was achieved. For each increment 32 transients were recorded.

Fig. 5. 2D projections onto the F3 (C)/F4 (H) plane of 4D HCCH-TOCSY spectra of 0.5 mM Engrailed (114 amino acids), obtained with nuFT (a) and SSA (b) processing, shown
using the same intensity scale. Intense vertical stripes of artefacts present in the nuFT spectrum (a) are suppressed by SSA (b). The projection is compared with a
conventionally sampled 2D (HC)CH-TOCSY spectrum using the same pulse sequence (c). The peaks resulting from pulse sequence imperfections and residual water resonance
appear in both (c) and (b); thus they are not due to false positives/negatives of SSA processing. The 4D HCCH-TOCSY was recorded using sparse on-grid sampling, with 2900
points randomly chosen on a 90 � 140 � 140 Cartesian grid. A decreasing Gaussian sampling density, exp[�(t/tmax)2/2r2] for non-negative t and 0 otherwise, with r = 0.7 was
used. Maximum evolution times of 15, 10 and 10 ms, and spectral widths of 6, 14 and 14 kHz were chosen in the indirectly detected t1 (H), t2 (C) and t3 (C) dimensions,
respectively. Effectively, a relative sampling density of 0.16% was achieved. For each t1/t2/t3 sampling point eight hypercomplex components were recorded by accumulation
of four transients The 4D spectra were transformed with 352 � 512 � 512 points in F1, F2 and F3. The 2D (HC)CH-TOCSY spectrum was recorded immediately after the
acquisition of the 4D experiment, using the same pulse sequence and phase cycle. The spectral width was 14 kHz and 140 increments in F1 (C) were recorded to obtain the
same spectral resolution in the carbon dimension.
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Fig. 6. Statistics of SSA processing of a 4D HCCH-TOCSY spectrum (experimental
details are given in the caption to Fig. 5). (a) Effective noise level nF4 measured in a
3D F1 � F2 � F3 cube for each point in the acquisition dimension F4. The noise was
defined as the median of absolute values of all spectral intensities. Upper (red) and
bottom (blue) curves represent noise levels in the nuFT and SSA processed spectra,
respectively. (b) Reduction of the noise level (RNL), computed from data shown in
(a) using the formula RNL = 100 (nF4(nuFT) � nF4(SSA))/nF4(nuFT). Note that due to
the presence of thermal noise the noise reduction can never reach 100%, and
achievable values depend on the relative intensities of thermal and artificial
sampling noise. (c) Signal-to-noise level of the most intense peak in a 3D
F1 � F2 � F3 cube for each point in F4. The upper (blue solid line) and lower (red
dotted line) curves correspond to the SSA and nuFT processed spectra, respectively.
The plot provides information on the overall sensitivity of the experiment and
illustrates the influence of sampling artefacts on the nuFT spectrum. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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The crucial part of SSA is the simulation of FID signals, which
are supposed to give the same peak shapes as in a nuFT spectrum.
As shown in Fig. 1, SSA is capable of handling arbitrary peak
shapes, since the FID signals are not required to be single damped
sinusoids. Previously, it has been shown by simulations that SSA
works better than the CLEAN algorithm (e.g. [16]) with respect to
artefact suppression [17,31]. This is believed to be due to the more
accurate reproduction of peak shapes, and the capability of choos-
ing an optimal signal shape, either simple sinusoids or composite
signals.

It is noteworthy that ML-based methods assume that signals are
sufficiently separated from each other, otherwise the model of
spectrum as linear combination of decaying sinusoids may not be
stably fitted. As it is impossible to avoid signal overlap in complex
spectra, SSA employs also a more general model for non-Lorentzian
signal shapes [17]. Interestingly, multidimensional decomposition
(MDD) employs a different general model that is able to reproduce
overlapped peaks [13]. However, this flexibility in constructing sig-
nal shapes is achieved at the cost of generality, as the decomposi-
tion requires that the number of peaks to be known in advance.
The interesting difference between SSA and MDD is that the latter
can use the shared shape in one or more dimensions for a group of
peaks, which improves the quality of decomposition of some kinds
of spectra, e.g., 3D 15N- and 13C-edited NOESY [13] or 4D HNCACO.

The computational procedure previously applied to 3D spectra
can be readily extended to higher dimensionalities, however, a ra-
pid increase in memory requirements and processing times has to
be considered, as will be discussed at the end of this section.

In comparison to 3D SSA, a few changes were made for 4D spec-
tra regarding both the automatic identification of peaks and the fit-
ting of signal parameters. Contrary to most existing processing
methods (except MDD), which repeat three-dimensional proce-
dures for each point in the directly detected dimension, our algo-
rithm works on all dimensions of the 4D spectrum. An advantage
of this approach is the increased reliability of peak picking as it
is less prone to artefacts or noise peaks. Another benefit comes
from the fact that more accurate estimates of peak parameters
(amplitudes, frequencies and decay rates) can be obtained if the
directly detected dimension is included. This adds only two more
parameters to the signal model (a frequency and a decay rate)
while the amount of independent data increases significantly since
the signals typically extend over a certain number of points in the
acquisition dimension.

Because of sampling artefacts, the apparent noise level varies
along the directly detected dimension. For this reason chi-square
fitting (also known as weighted least squares fitting [32]) of signal
parameters was introduced, using a target function of the follow-
ing form:

wðA; R
!

2; X
!
Þ ¼

X
i

Ssim
i � Sexp

i

� �2
=r2

i ; ð2Þ

where A, R
!

2 and X
!

are the parameters of the analytical signal, Ssim
i

and Sexp
i are elements (pixels) of the simulated and experimental

nuFT spectra, respectively, and the sum extends over pixels in an iso-
lated ‘‘peak frame’’. The noise level ri is estimated in a 3D subspec-
trum spanned by the indirectly detected frequency domains
F1 � F2 � F3, and may vary for subsequent points in the acquisition
dimension. More specifically, it is defined as the median of absolute
values of spectral intensities in a 3D subspectrum. It must be empha-
sized that all model signals are simulated in the time domain, Fourier
transformed, and compared with an experimental spectrum in the
frequency domain employing Eq. (2). This approach ensures that
NUS affects simulated and experimental spectra equally, so that cor-
responding time domain signals can be subtracted directly. In con-
trast to CLEAN [16], both SSA and ML-based methods (a variant
referred to as hybrid time frequency domain maximum likelihood
in particular [30]) focus on relatively small regions of spectrum



Fig. 7. 2D F1 (Haliph)/F2 (Caliph) cross-sections from a NUS 4D HCCH-TOCSY spectrum, computed at F3 (Caliph)/F4 (Haliph) coordinates of Ca/Ha (a, g), Cb/Hb (b, h), Cc/H c1 (c, i), Cc/
Hc2 (d, e), Cd/Hd (e, k) and Ce/He (f, l) resonances of the side-chain of K216. An arrow denotes the diagonal peak in each cross-section. The corresponding cross-sections from
SSA (upper panels) and nuFT spectra (bottom panels) are plotted using the same intensity scales. Only peaks that belong to the K216 spin system and posses S/N > 6
(measured on a particular cross-section) are labelled. Due to intense sampling artefacts in the nuFT spectra (g–l) it is impossible to detect many peaks, in particular, the Hc/Cc

resonances do not appear clearly in any of the cross-sections. On the contrary, almost all cross-peaks are present in the SSA spectrum (a–f), allowing one to unambiguously
identify the spin system. Additionally, a high redundancy enables one to exclude peaks belonging to other spin systems, which appear due to overlaps is the C-HSQC close to
the position of a particular diagonal peak.
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where peaks reside and fit model signals independently to avoid
multiple evaluations of full spectrum. However, signals in NUS spec-
tra interfere much stronger than in truncated conventionally sam-
pled ones as point spread functions are less localized. Due to this
coupling it is beneficial to repeat fitting procedure in SSA [17].

The implementation of 4D SSA has been restricted to sparse on-
grid distributions. Firstly, this allows one readily to employ the
States-TPPI method to shift imperfections to the edges of the spec-
tra. Secondly, such a choice of sampling points enables numerical
optimizations of at least two kinds compared to arbitrary off-grid
sampling.

The first one regards the possible use of an FFT algorithm,
although this is usually only advantageous for the last time dimen-
sion that must be transformed. In the first stages of the FFT trans-
formation, data arrays basically contain more zeros (omitted
points) than recorded data and ‘‘slow’’ FT usually exhibits better
performance [17].
A slightly less obvious benefit of on-grid distributions is re-
vealed for larger data sets, with a total number of samples N great-
er than a few hundred. For simplicity, a case of 2D nuFT will be
discussed. For a 2D spectrum with M1 �M2 points that is calcu-
lated as Fourier sums of N samples, the computational cost scales
as (i) an inconveniently large number M1M2N for arbitrary off-grid
sampling and (ii) a much more reasonable number M1N + M1M2N2

if the points are arranged on an N1 � N2 time domain grid. For
sparse data sets ðN � N1N2Þ, the term M1N can usually be
neglected, since the following relations hold

M1N � M1N1N2 6 M1M1N2 � M1M2N2:

Consequently, processing of on-grid data requires only a small
fraction M1M2N2/M1M2N = N2/N of operations compared to arbi-
trary off-grid sampling. Since the total number of samples N can
be considerably greater than number of increments N1 and N2 in
either of the two time dimensions



Fig. 8. F1 (Haliph)/F4 (HN) projections of a sparsely sampled 4D C, N-edited HMQC-NOESY-HSQC spectrum of 0.5 mM Engrailed 2 protein, obtained with nuFT (a) and SSA (b).
Sampling artefacts are prominent in the most crowded central amide region only, and are completely removed by SSA processing. Apart from some aliphatic-amide cross-
peaks, some axial artefacts appear at the edges of spectrum. The sampling scheme consisted of 6500 points chosen randomly on a 86 � 150 � 100 Cartesian grid in t1, t2, and
t3. Maximum evolution times of 14, 10 and 50 ms, and spectral widths of 6, 15 and 2 kHz were used in t1 (H), t2 (C) and t3 (N). Consequently, a relative sampling density of
0.52% was achieved. Four transients were coherently added for each of the eight hypercomplex sampling points. The spectrum was transformed with 336, 592 and 512 points
in F1, F2, and F3. Positive and negative contours were plotted in red and green, respectively.

J. Stanek et al. / Journal of Magnetic Resonance 214 (2012) 91–102 97
N1;N2 � N;

the speed-up factor N/N2 can be quite significant.
2.2. Reconstruction of spectra

Most existing processing methods for NUS data aim at recon-
structing the full time domain signal, or equivalently, its DFT
spectrum. Unfortunately, this approach becomes impractical
when dealing with high-resolution four-dimensional spectra. For
example, assuming equal maximum evolution times t1,max =
t2,max = t3,max = 20 ms and spectral widths sw1 = sw2 = sw3 = 5 kHz,
reconstruction of the full time domain grid requires 106 floating
point values to be stored for each point in the acquisition dimen-
sion. Assuming that 500 points in the acquisition dimension are
relevant, this yields approximately 2 GB of storage for FID’s in sin-
gle precision, and 16 GB for a 4D spectrum obtained with double
zero-filling. Although such files can in principle be stored on
modern disks, long retrieval times for different spectral regions
make an alternative approach desirable. Another difficulty arises
from the fact that, in contrast to our 64-bit processing program,
many applications are working in 32-bit environment, and e.g.,
cannot properly handle large files or operate on large memory
arrays.

The solution proposed here for SSA utilizes the following ideas:
(i) sparse non-uniform FT [15], and (ii) spectral reconstruction
from model shapes as in the MDD method [33]. High-dimensional
spectra are usually analyzed using simple experiments, e.g., 15N or
13C-HSQC are employed for 4D spectra. In fact, four-dimensional
spectra have at least one 2D-projection that resembles 15N or
13C-HSQC. This allows one to focus on selected 2D cross-sections
(say F1 � F2) of a 4D spectrum, for which the remaining two spec-
tral coordinates (e.g., F3 and F4) correspond to a given peak in
HSQC. An efficient way of computing 2D cross-sections for SSA out-
put data is described below.

As illustrated in Fig. 2, the final spectrum is obtained from (a)
reconstruction data that comprise all extracted peak parameters,
plus small spectral sub-regions containing unresolved peaks and
(b) residual sparse FID’s. The former usually does not require much
storage space, and the latter have the same size as the original
experimental sparse data. Both files are much smaller than the
reconstructed spectra, and can be easily transferred over long dis-
tances. For this reason SSA and reconstruction procedures were
separated into independent programs.

The most straightforward method to compute a selected cross-
section is to simulate known signals on a full time domain grid and
to calculate the cross-section using sparse FT (i.e., by direct evalu-
ation of a Fourier sum):

A; R
!

2; X
!

!simulation
full-gridFID !sparseFT

2D cross-section;

4D subspectrum!IFT
full-gridFID !sparse FT

2D cross-section:

However, this approach is computationally demanding and would
require a full time domain grid to be stored in memory as an inter-
mediate result.

The first observation is that peaks represented by the analytical
parameters A; R

!
2; X
!

need not be reconstructed in the multidimen-
sional time domain, as they appear in the spectrum as direct prod-
ucts of 1D shapes, which can be rapidly computed in advance.

Another optimization utilizes the fact that sequential FT/IFT
(forward/inverse FT) can be performed in arbitrary order. More
specifically, let us assume that F1 � F2 cross-sections are to be com-
puted, and that the F3 and F4 coordinates (denoted as X3, X4) are
known in advance. Then the optimal order of the transformations
is:



Fig. 9. A comparison of spectral resolution between 1D F1 (H) cross-sections of 3D N-edited NOESY-HSQC (a, d) and 2D F1 (Haliph)/F2 (Caliph) cross-sections of 4D C, N-edited
spectra for residues E236 (a–c) and R181 (d–f). Owing to the carbon chemical shift dispersion it is possible to resolve all cross-peaks that overlap in the 3D spectrum. For
example, the intra-residue HaCa cross-peak of the E236 residue can be easily distinguished from inter-residue cross-peaks (b). Panels b and e correspond to the SSA processed
spectrum. Cross-sections from a nuFT spectrum are shown in panels c and f with the same intensity scale as b and e. The suppression of sampling artefacts enables one to
identify weak cross-peaks that are masked in the nuFT spectra (c, f). The cross-sections were taken at F3 (N)/F4 (HN) = 119.64/8.26 ppm (E236) and 121.33/7.955 ppm (R181).
Experimental details for 4D C, N-edited HMQC-NOESY-HSQC are given in the caption to Fig. 8. The 3D N-edited NOESY-HSQC was recorded on a 1 GHz spectrometer using
conventional sampling on a 64 � 32 grid for F1 (H) and F2 (15N), respectively. The spectral widths in the indirect dimensions were 11.9 kHz (F1) and 1.8 kHz (F2). Eight
transients were used for each hypercomplex component.
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4DsubspectrumSðx1;x2;x3;x4Þ !
IFT-t4

Sðx1;x2;x3; t4Þ

!1�point FT-F4
Sðx1;x2;x3;X4Þ !

IFT-t3
Sðx1;x2; t3;x4Þ

!1�point FT-F3
Sðx1;x2;X3;X4Þ !IFT-t2;IFT-t1

Sðt1; t2;X3;X4Þ

!2D DFT
2D cross-section:

As shown above, if sparse FT’s (transformations to a single point in
the frequency domain) precede two-dimensional DFT, the storage
requirements for the intermediate results are greatly reduced.
Moreover, the computational burden decreases from

Y4

k¼1

Rk

Y4

k¼1

Nk;

where Rk is a number of digital points in kth dimension of a 4D sub-
spectrum to:

R1R2R3R4N4 þ R1R2R3N4 þ R1R2R3N3 þ R1R2N3 þ cost of 2D DFT:

Similarly, the computation of a cross-section from a sparse residual
FID ought to be performed as a sequence of sparse FT’s (for a single
point in the frequency domain) followed by 2D-nuFT.

2.3. Optimization of HMQC blocks

Until recently, long evolution periods in 4D experiments were
inaccessible due to sampling limitations. In contrast, NUS allows
one to extend evolution times to the limits of relaxation times
[15]. The practical guidelines on the optimal sampling schedules
in terms of sensitivity, which rely on prior knowledge of mean
T2, were recently given by Rovnyak and co-workers [34]. These
results suggest that signals should be sampled at significantly lar-
ger evolution times than possible conventionally (up to �1.26T2).
The need to minimize relaxation losses during such extended evo-
lutions triggers off the research on pulse sequence improvements.
In the following section we demonstrate how HMQC blocks can be
modified to extend possible evolution in the constant-time mode
(CT) without any further decrease in sensitivity.

The rearrangement of pulses and delays in the initial part of the
HMQC sequence (see Fig. 3a and b) is aimed at utilizing both D de-
lays for proton evolution (in CT or SCT mode), while in the standard
HMQC sequence (see e.g. [35]) only one fixed delay D = 1/(2J) is
used. Clearly, proton chemical shifts evolve during t = sa + sb

� sc + D in the entire block, and the heteronuclear coupling evolves
during sa � sb + sc = D up to the first p/2 pulse applied to carbon-13.
Most importantly, the modification enables a constant-time evolu-
tion for protons (sa = t/2, sb = 0, sc = D � t/2) up to tmax = 2D, twice
as long as in the conventional version. For the case of semi-constant
time evolution (SCT), the delays in Fig. 3b should be set to

sa ¼ t=2
sb ¼ t=2 � ð1� 2D=tmaxÞ
sc ¼ Dð1� t=tmaxÞ:

ð3Þ

One can notice that relaxation losses are also decreased in this case.
More formally, the sensitivity for standard evolution mode (Eq.
(4a)) and for SCT in the modified (Eq. (4b)) HMQC block, respec-
tively, are given by:Z tmax

0
exp �2Dþ s

T2

� �
ds; tmax 	 D; ð4aÞ

Z tmax

0
exp �2Dþ sð1� 2D=tmaxÞ

T2

� �
ds; tmax 	 2D: ð4bÞ

It can easily be shown that the largest benefit of the improved
HMQC is obtained for tmax = 2D, and slightly decreases for longer
maximum evolution times. For a molecule with�50 kDa with a cor-
relation time sc � 20 ns and T2 (Haliph) � 20 ms the maximum sen-
sitivity gain can be estimated to be approximately 18% (assuming
D = 3.6 ms).

The performance of the modified HMQC sequence was verified
for a 2D H(CN)H-HMQC-NOESY-HSQC experiment for a 0.5 mM
sample of 42.5 kDa maltose binding protein (see Fig. 3c for the
detailed description of the 4D pulse sequence). The acquisition
was performed with the standard sequence first, and then with
the optimized version (see spectra compared in Fig. 4). An evident,
though not overwhelming signal enhancement has been observed,
which is in agreement with theoretical predictions.

In this work, the modified HMQC block was employed in a 4D
C, N-edited NOESY experiment (see Fig. 3c). It can be applied to
4D C, C-edited NOESY as well, or incorporated into other pulse
sequences that include indirect proton and heteronuclear evolu-
tion and storage of proton z-magnetization both at the beginning
and end of the block.
3. Results and discussion

3.1. 4D HCCH-TOCSY

The 4D sensitivity-enhanced HCCH-TOCSY experiment was re-
corded in ca. 44 h using a sampling scheme with 2900 points,
which corresponds to 0.16% of the samples required for conven-
tional acquisition. As the signal-to-artefact ratio depends solely
on the total number of samples [15], and not on the sampling
density, the maximum evolution times were adjusted to the
relaxation properties. Quite importantly, in the carbon dimen-
sions the signals are modulated by at least one C–C coupling,
JCC � 35 Hz (except for glycine Ca), so that it is not beneficial to
approach 1/(2JCC) � 14 ms. On the other hand, one should attempt
to achieve maximum resolution at least in the last carbon dimen-
sion to avoid ambiguities in the analysis. Thus, the extension of
the maximum evolution time up to 10–12 ms is recommended,
approximately twice as long as used previously for this experi-
ment [16]. It should be noted that modulations by C–C couplings
act as apodization functions and significantly decaying sampling
schemes are not advisable. Here a sampling grid of
90 � 140 � 140 points was used; points were randomly chosen
according to a Gaussian probability density with zero mean and

r ¼ 0:7 : pðtÞ ¼
ffiffiffiffiffiffi

2
pr2

q
exp � t

tmax

� �2
=ð2r2Þ

� �
for t P 0 and 0 other-

wise (see [9]). The variance of point distribution (r = 0.7) was
found empirically to match the envelope of J-modulated and
decaying signal in the carbon dimensions t2 and t3.

The collected data were transformed using 4D SSA yielding a
significant improvement in signal-to-artefact ratio. The results
can be conveniently presented as 2D projections of the 4D spec-
trum as a function of x1(H) and x2(C) (Fig. 5a and b). This projec-
tion shows nearly the best resolution achievable for the aliphatic
carbon dimension and can be directly compared with 13C-HSQC.
A number of extra peaks were observed that may be attributed
to the short 4-step phase cycle. It is apparent from Fig. 5c that
the conventionally acquired 2D (HC)CH-TOCSY spectrum exhibits
the same distortions.

The quality of processing can be quantified by measuring the
noise level in the nuFT processed spectrum and in the final SSA spec-
trum (Fig. 6a). The noise level was determined as the median of the
absolute values of all intensities in a 3D cube for each point in the
acquisition dimensionx4. Initially, the spectrum is heavily distorted
by sampling artefacts, which can be 10 times larger than the thermal
noise, and 2.7 times on average (in the �1 to 6 ppm region).

A similar experiment with significantly lower resolution was re-
cently presented for the small protein GB1 (56 amino acids,
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6.2 kDa) in 1.0 mM concentration [16]. It was reported that CLEAN
processing resulted in a 44% decrease of the apparent noise level
(from 2.4 to 1.4 times the thermal noise level) on average, and
78% at best. In the case above, SSA processing achieved an average
reduction of noise level of 55% (in the region�1 to 6 ppm), and 90%
at best. Our results, combined with previous simulations [2,17],
suggest that SSA can suppress sampling artefacts more efficiently
than FFT-CLEAN method.

One should comment that the mean noise reduction should not
be considered as an accurate measure when averaged over the en-
tire spectrum in the presence of thermal noise and residual solvent
signals. The latter limit the achievable reduction of the noise level,
and the statistics should be corrected in this respect (Fig. 6b). We
suggest that a representative region of the acquisition dimension
that is reasonably far from the solvent signal be used for statistics.
In the case of 4D HCCH-TOCSY the noise intensity is reduced by
71% (from 4.1 to 1.2 times the thermal noise) in the region between
1 and 3 ppm. Obviously, less reduction of the noise level can be ob-
tained in regions with medium or weak peaks, where thermal
noise dominates over artefacts (Fig. 6b). This suggests that artefact
suppression algorithms are less effective for experiments of low
sensitivity, for which nuFT might be employed as well.

It might be questioned whether HCCH-TOCSY requires an ad-
vanced method for reduction of sampling artefacts, as the S/N in
the nuFT spectrum seems sufficient for peak identification
(Fig. 6c). However, even for medium-sized proteins this experiment
cannot be successfully analysed without removal of artefacts. Exam-
ples of 2D cross-sections (Fig. 7g–l) demonstrate that artefacts ob-
scure most resonances, rendering the analysis inefficient or even
impossible. This is due to the fact that sampling artefacts originating
from peaks in the same x4 region accumulate, decreasing the signal-
to-artefact ratio determined by the sampling scheme by a further
factor �

ffiffiffiffi
K
p

, where K is the number of resonances of comparable
amplitude, which is usually significant in the case of CC-TOCSY
experiments. The SSA processed spectrum features a considerably
higher S/N ratio and, owing to the high redundancy of information
(compare Fig. 7a–f), enables one to resolve side-chain signals even
in cases with severe overlap.

The possibility of recording and processing high-resolution 4D
HCCH-TOCSY spectra calls for new strategies of analysis. We sug-
gest that spin systems of methyl containing residues be first iden-
tified, since the corresponding region of 13C-HSQC is usually best
resolved and T�2 (C) are typically longer for methyl resonances.
These resonances can be assigned on the basis of Ca/Ha (and
optionally also Cb/Hb) chemical shifts observed in the 2D cross-sec-
tions at the 1H (F4) and 13C (F3) coordinates of a methyl group.
Alternatively, one can start from the Ha/Ca region, which is also
quite well dispersed, however, overlap and the presence of residual
solvent signals may hinder the assignment process. Since the man-
ual analysis of such a complex spectrum might be inconvenient,
automation that utilizes a high level of data redundancy is desired.

3.2. 4D C, N-edited NOESY

The symmetry of four-dimensional NOESY spectra, which corre-
late two heteronuclear pairs of spins, is currently not fully utilized
due to sampling restrictions and prohibitively long measurements.
Typically their 3D counterparts (either 13C or 15N-edited) are re-
corded, which suffer from frequent cross-peak overlap, even if
optimal spectral resolution is achieved. Very few examples of
NUS 4D NOESY spectra were reported so far [36–38]. Indeed,
NOESY spectra are quite challenging for processing methods, since
they require (i) a faithful linear reproduction of the peak ampli-
tudes, (ii) the preservation of a high dynamic range and (iii) the
capability of processing complex spectra with thousands of reso-
nances. 4D NOESY spectra can be processed with the MDD method
provided three-dimensional decomposition is employed [36]. Con-
sequently, this approach is limited to moderate sampling densities,
typically above �10% [13]. Another approach was demonstrated by
Werner-Allen and co-workers [37] who employed the FFT-CLEAN
method for processing 4D amide-amide NOESY spectra with sup-
pression of diagonal peaks. It was shown that neither FFT-CLEAN
[37] nor SSA [17] affects the relative intensities of resonances, so
that they can provide reliable structural information from NOESY
peak amplitudes. Here we present an application of SSA to a 4D
C, N-edited NOESY spectrum, which provides valuable amide
-aliphatic cross-peaks.

Due to the absence of diagonal peaks and associated artefacts,
4D C, N-edited NOESY spectra are less demanding with respect to
signal processing. Indeed, as shown in Fig. 8a. sampling artefacts
in the nuFT spectrum tend to dominate over thermal noise only
in the region between 8 and 8.5 ppm, where overlapping reso-
nances from the unstructured part of Engrailed accumulate.
Fig. 8b illustrates that most sampling artefacts were suppressed
efficiently by SSA. Although neither CLEAN nor SSA can remove
NUS artefacts completely, a flat baseline showing only thermal
noise was achieved. The reduction of the apparent noise level was
5% on average in the region between 7.2 and 9.6 ppm, reaching a
maximum of 30% in the most crowded region. It may be argued that
artefact cleaning procedures are very useful in the case of NOESY
spectra where diagonal peaks are lacking or suppressed [37]. How-
ever, even a modest improvement of the signal-to-artefact ratio
may reveal new resonances and reduce peak volume distortions.

It is noteworthy that 4D C, N-NOESY should be acquired with
high spectral resolution in the nitrogen dimension to avoid ambi-
guities in signal assignment. In the presented case, a maximum
evolution time of 50 ms was used to resolve almost all resonances
in the corresponding 15N-HSQC. For the reasons mentioned above,
the maximum evolution time for the aliphatic carbons was limited
to 10 ms. For sensitivity reasons, the experiment consisted of 6500
sampling points (86 h). Despite this rather lengthy acquisition,
only a fraction of 0.5% of the samples of the corresponding conven-
tional experiment was collected. Due to the fact that the signal-to-
artefact ratio does not depend on the sampling density for non-
uniform FT [15], both FFT-CLEAN or SSA seem to be methods of
choice for high-resolution 4D spectra.

The benefits of high dimensionality and high resolution are
clearly visible when corresponding cross-sections of 3D and 4D
spectra are compared (see Fig. 9). While it is possible to achieve
good sensitivity at very high fields (1 GHz in this case), conven-
tional sampling results in severe overlap of cross-peaks in the 3D
15N-edited NOESY (Fig. 9a and d). The additional carbon-13 dimen-
sion in 4D C, N-edited NOESY enables one to resolve overlapping
resonances, identify more of them, and improve the accuracy of
peak volumes. Moreover, the correlation of proton and carbon fre-
quencies greatly simplifies the assignment of cross-peaks.

4D C, N-edited NOESY is not only useful for structural studies
but may also may assist in side-chain resonance assignment, e.g.,
when long mixing times allow spin-diffusion to be effective [39].
In particular, this experiment can be recorded at the highest field
available, while the RF power required for TOCSY-based tech-
niques, which increase proportionally to B0

2, make them techni-
cally demanding in very high fields. This approach might also be
promising for larger proteins that yield HC(CC-TOCSY)CONH of
poor quality and extremely crowded 4D HCCH-TOCSY.
4. Experimental

The 4D HCCH-TOCSY and 4D C, N-edited HMQC-NOESY-HSQC
spectra have been recorded for 0.5 mM 13C, 15N doubly labelled
Engrailed protein sample in 9:1 H2O/D2O at pH 6.0 at 303 K on a
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Varian NMR System 700 spectrometer equipped with a Performa
XYZ PFG unit using the 5 mm triple resonance probe. The experi-
mental protocol for expression and purification of Engrailed has
been described elsewhere [26]. A mixing time of 160 ms was used
for the 4D C, N-edited NOESY experiment. For the 4D HCCH-TOCSY
spectrum, z-DIPSI-3 mixing with cB1/(2p) = 7.2 kHz and a duration
of 15 ms was used.

The 2D H(CN)H-HMQC-NOESY-HMQC experiment has been
performed for a 0.5 mM sample of 0.5 kDa maltose binding protein
(MBP, 371 amino acids) in 19:1 H2O/D2O at pH 7.2 at 298 K. The
sample was purchased from Cambridge Isotope Laboratories Inc.

An acquisition time of 85 ms was used in all cases; a
cosine-squared weighting function was applied in the acquisition
dimension. Inter-scan delays of 1.2 s and 1.6 s were used for
4D C, N-edited NOESY and HCCH-TOCSY, respectively. In both
cases, four scans were coherently added for each acquired FID sig-
nal. No weighting functions were employed in the indirect dimen-
sions of the sparsely sampled experiments. The processing times
on a 64-bit server running with two Intel Xeon 1.6 GHz CPUs and
8 GB RAM were 27 and 17 h for 4D HCCH-TOCSY and 4D C, N-
NOESY, respectively.

The 3D 15N-edited NOESY-HSQC experiment has been recorded
for uniformly 15N labelled Engrailed sample on the Bruker Avance
spectrometer operating at proton frequency of 1000 MHz equipped
with a cryogenic probe. Recovery delay of 1.5 s and mixing time of
150 ms were used here.
4.1. Software availability

The 4D SSA software in the 64-bit binary form can be found on
the web site www.nmr700.chem.uw.edu.pl/software.
5. Conclusions

We have presented a four-dimensional SSA algorithm applied to
sparsely sampled 4D HCCH-TOCSY and 4D C, N-edited NOESY spec-
tra. Both experiments have been performed for a partially unstruc-
tured Engrailed protein with 114 amino acids to demonstrate the
benefits for the analysis of complex spectra of high dimensionality
and very high spectral resolution. It was shown that SSA is capable
of processing spectra obtained with a sampling density as low as
1%. In the case of 4D HCCH-TOCSY an efficiency of NUS artefact
suppression up to 90% was achieved, yielding a decrease of average
noise level by 55%. Additionally, we have proposed the optimiza-
tion of an HMQC block that minimizes losses due to transverse
relaxation during proton evolution. The improved HMQC has been
tested for 42.5 kDa MBP and employed to record a 4D C, N-edited
NOESY of Engrailed protein. The performance of SSA in applications
to demanding four-dimensional spectra with moderate computa-
tional times are encouraging for a more common usage of non
-uniform sampling in biomolecular research.
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